If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=106
We move all terms to the left:
4x^2-(106)=0
a = 4; b = 0; c = -106;
Δ = b2-4ac
Δ = 02-4·4·(-106)
Δ = 1696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1696}=\sqrt{16*106}=\sqrt{16}*\sqrt{106}=4\sqrt{106}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{106}}{2*4}=\frac{0-4\sqrt{106}}{8} =-\frac{4\sqrt{106}}{8} =-\frac{\sqrt{106}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{106}}{2*4}=\frac{0+4\sqrt{106}}{8} =\frac{4\sqrt{106}}{8} =\frac{\sqrt{106}}{2} $
| t+5-2(13-7)=4 | | 4s-17=23 | | 2(p+7)=32 | | 3(l+1)=21 | | 4x+5=-8x+21 | | 4i-6=10 | | 2(e+5)=40 | | 124p=-4p+128 | | 23x=529 | | 64n=100-48 | | (-2+3i)+(-3-i)=0 | | (-4+5i)+(3+8i)=0 | | -6=-x-10 | | 45/27=x/18=x/24 | | 60000+.2x=x | | i+-9=-7 | | 4-e=4 | | (x+5)-(2x-11)=(-3x+57)-(x+5) | | -14(2x+1)=x+2 | | 5(x+8)=4x-13 | | 5m^2-8m+4=5 | | -27x2+39x+288=0 | | 9x+9+3x=10 | | 2.7x2=x | | x2-13x-540=0 | | 5(t-9)+12.t=12 | | X3-11x2+39x-45=0 | | 2x+7=-3x+3 | | 7+3D=7(d+9) | | 3v+3=4+11v | | 12(7+8k)=7(3k+5) | | 13(6r+12)=4r+5 |